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PHYSICS IN ACTION

The sails of this boat billow out round and

full. As the boat begins moving forward

faster and faster, a ball on the deck rolls

toward the stern. The boat pitches back

and forth gently as it slices through the

waves. Water slaps against the hull, occa-

sionally spraying the crew and keeping

them cool in the hot sun.

At first, this scene seems to have little to

do with physics. Many people associate

physics with complicated concepts studied

by white-coated scientists working in labo-

ratories with intricate machinery.

But physics can be used to explain any-

thing in the physical world—from why the

ball moves to the back as the boat speeds

up to why different parts of the sail have

different colors.

• How are the principles of physics applied to
sailboat design?

• How can the principles of physics be used to
predict how a sailboat will move under vari-
ous conditions?

CHAPTER 1

The Science of
Physics
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Chapter 14

THE TOPICS OF PHYSICS

Many people consider physics to be a difficult science that is far removed from

their lives. This may be because many of the world’s most famous physicists

study topics such as the structure of the universe or the incredibly small parti-

cles within an atom, often using complicated tools to observe and measure

what they are studying.

But physics is simply the study of the physical world. Everything around

you can be described using the tools of physics. The goal of physics is to use a

small number of basic concepts, equations, and assumptions to describe the

physical world. Once the physical world has been described this way, the

physics principles involved can be used to make predictions about a broad

range of phenomena. For example, the same physics principles that are used

to describe the interaction between two planets can also be used to describe

the motion of a satellite orbiting the Earth.

Many of the inventions, appliances, tools, and buildings we live with today

are made possible by the application of physics principles. Every time you take

a step, catch a ball, open a door, whisper, or check your image in a mirror, you

are unconsciously using your knowledge of physics. Figure 1-1 indicates how

the areas of physics apply to building and operating a car.

1-1
What is physics?

1-1 SECTION OBJECTIVES

• Identify activities and fields
that involve the major areas
within physics.

• Describe the processes of the
scientific method.

• Describe the role of models
and diagrams in physics.

Mechanics Spinning motion of the wheels, 
tires that provide enough friction for traction

Thermodynamics Efficient engines, use of coolants

Optics Headlights, 
rearview mirrors

Electromagnetism 
Battery, starter, headlights

Vibrations and mechanical waves 
Shock absorbers, radio speakers, sound insulation

Figure 1-1
Without knowledge of many of the
areas of physics, making cars would
be impossible.

TEKS
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5The Science of Physics

Physics is everywhere

We are surrounded by principles of physics in our everyday lives. In fact, most

people know much more about physics than they realize. When you buy a car-

ton of ice cream at the store and put it in the freezer at home, you do it

because intuitively you know enough about the laws of physics to know that

the ice cream will melt if you leave it on the counter.

Any problem that deals with temperature, size, motion, position, shape, or

color involves physics. Physicists categorize the topics they study in a number

of different ways. Table 1-1 shows some of the major areas of physics that will

be described in this book.

People who design, build, and operate sailboats need a working knowledge

of the principles of physics. Designers figure out the best shape for the boat’s

hull so that it remains stable and floating yet quick-moving and maneuver-

able. This design requires knowledge of the physics of fluids. Determining the

most efficient shapes for the sails and how to arrange them requires an under-

standing of the science of motion and its causes. Balancing loads in the con-

struction of a sailboat requires knowledge of mechanics. Some of the same

physics principles can also explain how the keel keeps the boat moving in one

direction even when the wind is from a slightly different direction.

Table 1-1 Areas within physics

Name Subjects Examples

Mechanics motion and its causes falling objects, friction,
weight, spinning 
objects

Thermodynamics heat and temperature melting and freezing
processes, engines,
refrigerators

Vibrations and wave specific types of springs, pendulums,
phenomena repetitive motions sound

Optics light mirrors, lenses,
color, astronomy

Electromagnetism electricity, magnetism, electrical charge, cir-
and light cuitry, permanent mag-

nets, electromagnets

Relativity particles moving at any particle collisions,
speed, including very particle accelerators,
high speeds nuclear energy

Quantum mechanics behavior of submicro- the atom and its parts
scopic particles
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THE SCIENTIFIC METHOD

When scientists look at the world, they see a network of rules and relation-

ships that determine what will happen in a given situation. Everything you

will study in this course was learned because someone looked out at the world

and asked questions about how things work.

There is no single procedure that scientists follow in their work. However,

there are certain steps common to all good scientific investigations. These steps,

called the scientific method, are summarized in Figure 1-2. This simple chart is

easy to understand; but, in reality, most scientific work is not so easily separated.

Sometimes, exploratory experiments are performed as a part of the first step in

order to generate observations that can lead to a focused question. A revised

hypothesis may require more experiments.

Physics uses models that describe only part of reality

How is physics distinct from chemistry, biology, or the other sciences? One

difference is the scope of the subject matter, as briefly referred to earlier in this

section. Another difference is that although the physical world is very com-

plex, physicists often use simple models to explain the most fundamental fea-

tures of various phenomena. They use this approach because it is usually

impossible to describe all aspects of a phenomenon at the same time. A com-

mon technique that physicists use to analyze an event or observation is to

break it down into different parts. Then physicists decide which parts are

important to what they want to study and which parts can be disregarded.

For example, let’s say you wish to study the motion of the ball shown 

in Figure 1-3. There are many observations that can be made about the 

Make observations
and collect data that
lead to a question.

Formulate and objectively
test hypotheses
by experiments.

Interpret results,
and revise the

hypothesis if necessary.

State conclusions in
a form that can be

evaluated by others.

Figure 1-2
Physics, like all other sciences, is
based on the scientific method.

Figure 1-3
This basketball game involves great
complexity.

model

a replica or description designed
to show the structure or workings
of an object, system, or concept
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You can disregard characteristics of the ball that have little or no effect on

its motion, such as the ball’s color and its sound when bouncing against the

floor. In some studies of motion, even the ball’s spin and size are disregarded,

and the change in the ball’s position will be the only quantity investigated, as

shown in Figure 1-4(b).
In effect, the physicist studies the motion of a ball by first creating a simple

model of the ball and its motion. Unlike the real ball, the model object is iso-

lated; it has no color, spin, or size, and it makes no noise on impact. Frequent-

ly, a model can be summarized with a diagram, like the one in Figure 1-4(b).
Another way to summarize these models is to build a computer simulation or

small-scale replica of the situation.

Without models to simplify matters, situations such as building a car or

sailing a boat would be too complex to study. For instance, analyzing the

motion of the sailboat is made easier by imagining that the push on the boat

from the wind is steady and consistent. The boat is also treated as an object

with a certain mass being pushed through the water. In other words, the color

of the boat, the model of the boat, and the details of its shape are left out of

the analysis. Furthermore, the water the boat moves through is treated as if it

were a perfectly smooth-flowing liquid with no internal friction. In spite of

these simplifications, the analysis can still make useful predictions of how the

sailboat will move.

situation, including the ball’s surroundings, size, spin, weight, color, time in

the air, speed, and sound when hitting the ground. The first step toward sim-

plifying this complicated situation is to decide what to study, the system. Typ-

ically, a single object and the items that immediately affect it are the focus of

attention. Once you decide that the ball and its motion are what you want to

study, you can eliminate all information about the surroundings of the ball

except information that affects its motion, as indicated in Figure 1-4(a).

(b)

Figure 1-4
To analyze the motion of the 
basketball, (a) isolate the objects
that will affect its motion. Then,
(b) draw a diagram that includes
only the motion.

system

a set of items or interactions
considered a distinct physical
entity for the purpose of study

(a)

TOPIC: Models in physics
GO TO: www.scilinks.org
sciLINKS CODE: HF2011

NSTA
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Models can help build hypotheses

A scientific hypothesis is a reasonable explanation for observations—one that

can be tested with additional experiments. The process of simplifying and

modeling a situation can help you identify the relevant variables and identify

a hypothesis for testing.

Consider the example of Galileo’s “thought experiment,” in which he mod-

eled the behavior of falling objects in order to develop a hypothesis about how

objects fell. At the time Galileo published his work on falling objects, in 1638,

scientists believed that a heavy object would fall faster than a lighter object.

In Galileo’s thought experiment, he imagined two identical objects being

released at the same time from the same height. They should fall with the

same speed. Galileo then imagined tying the two objects together while they

were falling. Both scenarios are represented in Figure 1-5.
If common belief were correct, the two objects tied together would sud-

denly fall faster than they had fallen before because they would be one heavy

object instead of two lighter ones. But Galileo believed that tying the two

objects together should not cause such a sudden change. As a result of this

reasoning, Galileo hypothesized that all objects fall at the same rate in the

absence of air resistance, no matter what size they are.

Models help guide experimental design

Galileo performed many experiments to test his hypothesis. To be certain he

was observing differences due to weight, he kept all other variables the same:

the objects he tested had the same size (but different weights) and were mea-

sured falling from the same point.

The measuring devices at that time were not precise enough to measure

the motion of objects falling in air, and there was no way to eliminate air

resistance. So Galileo used the motion of a ball rolling down a series of

smooth ramps as a model of the motion of a falling ball. The steeper the

ramp, the closer the model came to representing a falling object. These ramp

experiments provided data that matched the predictions Galileo made in 

his hypothesis.

What does happen: Heavy objects fall as
fast as lighter ones.

What does not happen: Heavy objects do
not fall faster than lighter ones.   

(a) (b)

not

Figure 1-5
Galileo used the thought experi-
ment represented by this diagram
as a way to organize his thoughts
about falling bodies. Heavy objects
must fall as fast as lighter ones (a),
or else two bricks tied together
would fall faster than they would if
kept separate (b).
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Like Galileo’s hypothesis, any hypothesis must be tested in a controlled
experiment. In an experiment to test a hypothesis, you must change one vari-

able at a time to determine what influences the phenomenon you are observing.

Galileo performed a series of experiments using balls of different weights on

one ramp before determining the time they took to roll down a steeper ramp.

The best physics hypotheses can make predictions in new situations

Until the invention of the air pump, it was not possible to perform direct tests of

Galileo’s hypothesis by observing objects falling in the absence of air resistance.

But even though it was not completely testable, Galileo’s hypothesis was used to

make reasonably accurate predictions about the motion of many objects, from

raindrops to boulders (even though they all experience air resistance).

Even if some experiments produce results that support a certain hypothe-

sis, at any time another experiment may produce results that do not support

the hypothesis. When this occurs, scientists repeat the experiment until they

are sure that the results are not in error. If the unexpected results are con-

firmed, the hypothesis must be abandoned or revised. That is why the last step

of the scientific method is so important. A conclusion is valid only if it can be

verified by other people.

Section Review

1. Name the areas of physics.

2. Identify the area of physics that is most relevant to each of the following

situations. Explain your reasoning.

a. a high school football game

b. food preparation for the prom

c. playing in the school band

d. lightning in a thunderstorm

e. wearing a pair of sunglasses outside in the sun

3. What are the activities involved in the scientific method?

4. Give two examples of ways that physicists model the physical world.

5. Physics in Action Identify the area of physics involved in each 

of the following tests of a lightweight metal alloy proposed for use in 

sailboat hulls:

a. testing the effects of a collision on the alloy

b. testing the effects of extreme heat and cold on the alloy

c. testing whether the alloy can affect a magnetic compass needle

controlled experiment

experiment involving manipula-
tion of a single variable or factor

In addition to conducting experiments
to test their hypotheses, scientists also
research the work of other scientists.
The steps of this type of research
include:
•  identifying reliable sources
•  searching the sources to find refer-

ences
•  checking carefully for opposing views
•  documenting sources
•  presenting findings to other scien-

tists for review and discussion
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1-2
Measurements in experiments

1-2 SECTION OBJECTIVES

• List basic SI units and the
quantities they describe.

• Convert measurements into
scientific notation.

• Distinguish between 
accuracy and precision.

• Use significant figures in
measurements and
calculations.

NUMBERS AS MEASUREMENTS

Physicists perform experiments to test hypotheses about how changing one

variable in a situation affects another variable. An accurate analysis of such

experiments requires numerical measurements.

Numerical measurements are different from the numbers used in a mathe-

matics class. In mathematics, a number like 7 can stand alone and be used in

equations. In science, measurements are more than just a number. For exam-

ple, a measurement reported as 7 leads to several questions. What physical

quantity is being measured—length, mass, time, or something else? If it is

length that is being measured, what units were used for the measurement—

meters, feet, inches, miles, or light-years?

The description of what kind of physical quantity is represented by a cer-

tain measurement is called dimension. In the next several chapters, you will

encounter three basic dimensions: length, mass, and time. Many other mea-

surements can be expressed in terms of these three dimensions. For example,

physical quantities, such as force, velocity, energy, volume, and acceleration,

can all be described as combinations of length, mass, and time. In later chap-

ters, we will need to add two other dimensions to our list, for temperature and

for electric current.

The description of how much of a physical quantity is represented by a cer-

tain numerical measurement depends on the units with which the quantity is

measured. For example, small distances are more easily measured in milli-

meters than in kilometers or light-years.

SI is the standard measurement system for science

When scientists do research, they must communicate the results of their exper-

iments with each other and agree on a system of units for their measurements.

In 1960, an international committee agreed on a system of standards, such as

the standard shown in Figure 1-6, and designations for the fundamental quan-

tities needed for measurements. This system of units is called the Système

International (SI). In SI, there are only seven base units, each describing a sin-

gle dimension, such as length, mass, or time. The units of length, mass, and

Figure 1-6
The official standard kilogram mass is a platinum-iridium cylinder
kept in a sealed container at the International Bureau of Weights
and Measures at Sèvres, France.

Copyright © by Holt, Rinehart and Winston. All rights reserved.
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NIST-7, an atomic clock at the
National Institute of Standards and
Technology in Colorado, is one of
the most accurate timing devices 
in the world. As a public service,
the Institute sends out radio trans-
missions 24 hours a day in order to
broadcast the time given by the
atomic clock.
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time are the meter, kilogram, and second, respectively. In most measurements,

these units will be abbreviated as m, kg, and s, respectively.

These units are defined by the standards described in Table 1-2 and are

reproduced so that every meterstick, kilogram mass, and clock in the world is

calibrated to give consistent results. We will use SI units throughout this book

because they are almost universally accepted in science and industry.

Not every observation can be described using one of these units, but the

units can be combined to form derived units. Derived units are formed by

combining the seven base units with multiplication or division. For example,

speeds are typically expressed in units of meters per second (m/s), with one

unit divided by another unit.

In other cases, it may appear that a new unit that is not one of the base

units is being introduced, but often these new units merely serve as shorthand

ways to refer to combinations of units. For example, forces and weights are

typically measured in units of newtons (N), but a newton is defined as being

exactly equivalent to one kilogram multiplied by meters per second squared

(1kg•m/s2). Derived units, such as newtons, will be explained throughout this

book as they are introduced.

SI uses prefixes to accommodate extremes

Physics is a science that describes a broad range of topics and requires a wide

range of measurements, from very large to very small. For example, distance

measurements can range from the distances between stars (about 100 000 000

000 000 000 m) to the distances between atoms in a solid (0.000 000 001 m).

Because these numbers can be extremely difficult to read and write, they are

often expressed in powers of 10, such as 1 × 1017 m or 1 × 10−9 m.

Another approach commonly used in SI is to combine the units with pre-

fixes that symbolize certain powers of 10, as shown in Figure 1-7. The most

Table 1-2 SI standards

Unit Original standard Current standard

meter (length) distance the distance traveled by
from equator to North Pole light in a vacuum in  

3.33564095 × 10−9 s

kilogram (mass) mass of 0.00 1 cubic the mass of a specific
meters of water platinum-iridium alloy

cylinder

second (time) (
6
1
0
) (

6
1
0
) (�

2
1
4
�) = 9 192 631 770 times

0.000 0 1574 average the period of a radio

solar days wave emitted from a
cesium- 133 atom

1
10 000 000

Figure 1-7
The mass of this mosquito can be
expressed several different ways:
1 × 10−5 kg, 0.0 1 g, or 10 mg.

TOPIC: SI units
GO TO: www.scilinks.org
sciLINKS CODE: HF2012

NSTA
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Metric Prefixes

M A T E R I A L S  L I S T

✔ balance (0.0 1 g precision or
better)

✔ 50 sheets of loose-leaf paper

Record the following measure-
ments (with appropriate units and
metric prefixes):

• the mass of a single sheet of
paper

• the mass of exactly 10 sheets
of paper

• the mass of exactly 50 sheets of
paper

Use each of these measurements
to determine the mass of a single
sheet of paper. How many different
ways can you express each of these
measurements? Use your results to
estimate the mass of one ream (500
sheets) of paper. How many ways
can you express this mass? Which is
the most practical approach? Give
reasons for your answer.

Chapter 112

common prefixes and their symbols are shown in Table 1-3. For example, the

length of a housefly, 5 × 10−3 m, is equivalent to 5 millimeters (mm), and the

distance of a satellite 8.25 × 105 m from Earth’s surface can be expressed as

825 kilometers (km). A year, which is 3.2 × 107 s, can also be expressed as 

32 megaseconds (Ms).

Converting a measurement from its prefix form is easy to do. You can build

conversion factors from any equivalent relationship, including those in Table 
1-3, such as 1.609 km = 1 mi and 3600 s = 1 h. Just put the quantity on one side

of the equation in the numerator and the quantity on the other side in the

denominator, as shown below for the case of the conversion 1 mm = 1 × 10–3 m.

Because these two quantities are equal, the following equations are also true:


1

1

0

m
−3

m

m
 = 1 and 

1

1

0

m

−3

m

m
 = 1

Thus, any measurement multiplied by either one of these fractions will be

multiplied by 1. The number and the unit will change, but the quantity

described by the measurement will stay the same.

To convert measurements, use the conversion factor that will cancel with the

units you are given to provide the units you need, as shown in the example

below. Typically, the units to which you are converting should be placed in the

numerator. It is useful to cross out units that cancel to help keep track of them.

Units don’t cancel: 37.2 mm × 
1

1

0

m
−3

m

m
 = 3.72 × 104 

m

m

m2



Units do cancel: 37.2 mm × 
1

1

0

m

−3

m

m
 = 3.72 × 10−2 m

Power Prefix Abbreviation

10− 18 atto- a

10− 15 femto- f

10− 12 pico- p

10−9 nano- n

10−6 micro- m (Greek
letter mu)

10−3 milli- m

10−2 centi- c

Power Prefix Abbreviation

10− 1 deci- d

10 1 deka- da

103 kilo- k

106 mega- M

109 giga- G

10 12 tera- T

10 15 peta- P

10 18 exa- E

Table 1-3
Some prefixes for powers of 10 used with metric units
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Both dimension and units must agree

Measurements of physical quantities must be expressed in units that match

the dimensions of that quantity. For example, measurements of length cannot

be expressed in units of kilograms because units of kilograms describe the

dimension of mass. It is very important to be certain that a measurement is

expressed in units that refer to the correct dimension. One good technique for

avoiding errors in physics is to check the units in an answer to be certain they

are appropriate for the dimension of the physical quantity that is being sought

in a problem or calculation.

If several people make independent measurements of the same physical

quantity, they may each use different units. As an example, consider Figure 
1-8(a), which shows two people measuring a room to determine the area of

carpet necessary to cover the floor. It is possible for one person to measure the

length of the room in meters and for the other person to measure the width of

the room in centimeters. When the numbers are multiplied to find the area,

they will give a difficult-to-interpret answer in units of cm•m, as shown in 

Figure 1-8(b). On the other hand, if both measurements are made using the

same units, the calculated area is much easier to intepret because it is expressed

in units of m2, as shown in Figure 1-8(c). Suppose that the measurements were

made in different units, as in the example above. Because centimeters and

meters are both units of length, one unit can be easily converted to the other. In

order to avoid confusion, it is better to make the conversion to the same units

before doing any more arithmetic.

Figure 1-8
When determining area by multiplying measurements of 
length and width, be sure the measurements are expressed in 
the same units. 2035 cm

� 12.5 m
1017.5
4070

2035
25437.5

? ?
2.54 � 104 cm•m

about

20.35 m

� 1 2.5 m
10. 1  7 5

40.70 

203.5
254. 37 5

2.54 � 102 m2
about

  

(a)

(b)

(c)
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PRACTICE 1A

1. A human hair is approximately 50 mm in diameter. Express this diameter

in meters.

2. A typical radio wave has a period of 1 ms. Express this period in seconds.

3. A hydrogen atom has a diameter of about 10 nm.

a. Express this diameter in meters.

b. Express this diameter in millimeters.

c. Express this diameter in micrometers.

4. The distance between the sun and the Earth is about 1.5 × 1011 m.

Express this distance with an SI prefix and in kilometers.

5. The average mass of an automobile in the United States is about 

1.440 × 106 g. Express this mass in kilograms.

Metric prefixes

SAMPLE PROBLEM 1A

Metric prefixes

P R O B L E M
A typical bacterium has a mass of about 2.0 fg. Express this measurement in
terms of grams and kilograms.

S O L U T I O N
Given: mass = 2.0 fg

Unknown: mass = ? g mass = ? kg

Build conversion factors from the relationships given in Table 1-3. Two pos-

sibilities are shown below.


1 ×

1

10

f

−

g

15 g
 and 

1 ×
1

10

f
−
g

15 g


Only the first one will cancel the units of femtograms to give units of grams.

(2.0 fg)�1 ×
1

10

f

−

g

15 g
� =

Then, take this answer and use a similar process to cancel the units of grams

to give units of kilograms.

(2.0 × 10−15 g)�1 ×
1

1

k

0

g
3 g

� = 2.0 × 10−18 kg

2.0 × 10−15 g
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ACCURACY AND PRECISION

Because theories are based on observation and experiment, careful measure-

ments are very important in physics. But in reality, no measurement is perfect.

In describing the imperfection, there are two factors to consider: a measure-

ment’s accuracy and a measurement’s precision. Although these terms are

often used interchangeably in everyday speech, they have specific meanings in

a scientific discussion.

Problems with accuracy are due to error

Experimental work is never free of error, but it is important to minimize error in

order to obtain accurate results. Human error can occur, for example, if a mistake

is made in reading an instrument or recording the results. One way to avoid

human error is to take repeated measurements to be certain they are consistent.

If some measurements are taken using one method and some are taken using

a different method, another type of error, called method error, will result.

Method error can be greatly reduced by standardizing the method of taking mea-

surements. For example, when measuring a length with a meterstick, choose a

line of sight directly over what is being measured, as shown in Figure 1-9(a). If

you are too far to one side, you are likely to overestimate or underestimate the

measurement, as shown in Figure 1-9(b) and (c). This problem is due to the phe-

nomenon known as parallax. Another example of parallax is the fact that the

speedometer reading reported by a car’s driver is more accurate than the

speedometer reading as seen from the passenger seat in an automobile.

Another type of error is instrument error. If a meterstick or balance is not

in good working order, this will introduce error into any measurements made

with the device. For this reason, it is important to be careful with lab equip-

ment. Rough handling can damage balances. If a wooden meterstick gets wet,

it can warp, making accurate measurements difficult.

Figure 1-9
If you measure this window by keeping your line of sight directly
over the measurement (a), you will find that it is 165.2 cm long.
If you do not keep your eye directly above the mark, (b) and (c),
you may report a measurement with some error.

accuracy

describes how close a measured
value is to the true value of the
quantity measured

precision

refers to the degree of exactness
with which a measurement is
made and stated

(a) (b) (c)
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Because the ends of a meterstick can be easily damaged or worn, it is best to

minimize instrument error by making measurements with a portion of the

scale that is in the middle of the meterstick. Instead of measuring from the

end (0 cm), try measuring from the 10 cm line.

Precision describes the limitations of the measuring instrument

Poor accuracy involves errors that can often be corrected. On the other hand,

precision describes how exact a measurement can possibly be. For example, a

measurement of 1.325 m is more precise than a measurement of 1.3 m. A lack

of precision is typically due to limitations of the measuring instrument and is

not the result of human error or lack of calibration. For example, if a meter-

stick is divided only into centimeters, it will be difficult to measure something

only a few millimeters thick with it.

In many situations, you can improve the precision of a measurement. This

can be done by making a reasonable estimation of where the mark on the

instrument would have been. Suppose that in a laboratory experiment you are

asked to measure the length of a pencil with a meterstick marked in centime-

ters, as shown in Figure 1-10. The end of the pencil lies somewhere between 

18 cm and 18.5 cm. The length you have actually measured is slightly more

than 18 cm. You can make a reasonable estimation of how far between the two

marks the end of the pencil is and add a digit to the end of the actual measure-

ment. In this case, the end of the pencil seems to be less than half way between

the two marks, so you would report the measurement as 18.2 cm.

Significant figures help keep track of imprecision

It is important to record the precision of your measurements so that other

people can understand and interpret your results. A common convention

used in science to indicate precision is known as significant figures.
In the case of the measurement of the pencil as about 18.2 cm, the mea-

surement has three significant figures. The significant figures of a measure-

ment include all the digits that are actually measured (18 cm), plus one

estimated digit. Note that the number of significant figures is determined by

the precision of the markings on the measuring scale.

The last digit is reported as a 0.2 (for the estimated 0.2 cm past the 

18 cm mark). Because this digit is an estimate, the true value for the measure-

ment is actually somewhere between 18.15 cm and 18.25 cm.

When the last digit in a recorded measurement is a zero, it is difficult to tell

whether the zero is there as a place holder or as a significant digit. For exam-

ple, if a length is recorded as 230 mm, it is impossible to tell whether this

number has two or three significant digits. In other words, it can be difficult to

know whether the measurement of 230 mm means the measurement is

known to be between 225 mm and 235 mm or is known more precisely to be

between 229.5 mm and 230.5 mm.

Figure 1-10
Even though this ruler is marked 
in only centimeters and half-
centimeters, if you estimate, you 
can use it to report measurements
to a precision of a millimeter.

significant figures

those digits in a measurement
that are known with certainty plus
the first digit that is uncertain
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One way to solve such problems is to report all values using scientific nota-

tion. In scientific notation, the measurement is recorded to a power of 10, and

all of the figures given are significant. For example, if the length of 230 cm has

two significant figures, it would be recorded in scientific notation as 2.3 ×
102 cm. If it has three significant figures, it would be recorded as 2.30 × 102 cm.

Scientific notation is also helpful when the zero in a recorded measure-

ment appears in front of the measured digits. For example, a measurement

such as 0.000 15 cm should be expressed in scientific notation as 1.5 × 10−4 cm

if it has two significant figures. The three zeros between the decimal point

and the digit 1 are not counted as significant figures because they are present

only to locate the decimal point and to indicate the order of magnitude. The

rules for determining how many significant figures are in a measurement

that includes zeros are shown in Table 1-4.

Significant figures in calculations require special rules

In calculations, the number of significant figures in your result depends on the

number of significant figures in each measurement. For example, if someone

reports that the height of a mountaintop, like the one shown in Figure 1-11, is

1710 m, that implies that its actual height is between 1705 and 1715 m. If

another person builds a pile of rocks 0.20 m high on top of the mountain, that

would not suddenly make the mountain’s new height known accurately

enough to be measured as 1710.20 m. The final answer cannot be more precise

than the least precise measurement used to find the answer. Therefore, the

answer should be rounded off to 1710 m even if the pile of rocks is included.

Table 1-4 Rules for determining whether zeros are significant figures

Rule Examples

1 . Zeros between other nonzero digits are significant. a. 50.3 m has three significant figures.
b. 3.0025 s has five significant figures.

2. Zeros in front of nonzero digits are not significant. a. 0.892 kg has three significant figures.
b. 0.0008 ms has one significant figure.

3. Zeros that are at the end of a number and also to a. 57.00 g has four significant figures.
the right of the decimal are significant. b. 2.000 000 kg has seven significant figures.

4. Zeros at the end of a number but to the left of a a. 1000 m may contain from one to four significant
decimal are significant if they have been measured figures, depending on the precision of the 
or are the first estimated digit; otherwise, they are measurement, but in this book it will be 
not significant. In this book, they will be treated as assumed that measurements like this have 
not significant. one significant figure.

b. 20 m may contain one or two significant figures,
but in this book it will be assumed to have one 
significant figure.

Figure 1-11
If a mountain’s height is known with
an uncertainty of 5 m, the addition
of 0.20 m of rocks will not apprecia-
bly change the height.
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Similar rules apply to multiplication. Suppose that you calculate the area of

a room by multiplying the width and length. If the room’s dimensions are 

4.6 m by 6.7 m, the product of these values would be 30.82 m2. However, this

answer contains four significant figures, which implies that it is more precise

than the measurements of the length and width. Because the room could be as

small as 4.55 m by 6.65 m or as large as 4.65 m by 6.75 m, the area of the room

is known only to be between 30.26 m2 and 31.39 m2. The area of the room can

have only two significant figures because each measurement has only two. So it

must be rounded off to 31 m2. Table 1-5 summarizes the two basic rules for

determining significant figures when you are performing calculations.

Calculators do not pay attention to significant figures

When you use a calculator to analyze problems or measurements, you may be

able to save time because the calculator can do the math more quickly than

you. However, the calculator does not keep track of the significant figures in

your measurements.

Calculators often exaggerate the precision of your final results by returning

answers with as many digits as the display can show. To reinforce the correct

approach, the answers to the sample problems in this book will always show

only the number of significant figures that the measurements justify.

In order to provide answers with the correct number of significant figures,

it will sometimes be necessary to round the results of a calculation. The rules

described in Table 1-6 will be used. In this book, the results of a calculation

will be rounded after each type of mathematical operation. For example, the

result of a series of multiplications should be rounded using the multiplica-

tion/division rule before it is added to another number. Similarly, the sum of

several numbers should be rounded according to the addition/subtraction

rule before the sum is multiplied by another number. You should consult your

teacher to find out whether to round this way or to delay rounding until the

end of all calculations.

Table 1-5 Rules for calculating with significant figures

Type of calculation Rule Example

addition or subtraction The final answer should have the same number
of digits to the right of the decimal as the
measurement with the smallest number of
digits to the right of the decimal.

multiplication or division The final answer has the same number of
significant figures as the measurement
having the smallest number of signif icant
f igures.

103. 15 round−−−−−−−→off 103.2

97.3
+ 5.85

658.05 round−−−−−−−→off 658

123
× 5.35
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Table 1-6 Rules for rounding

What to do When to do it Examples

round down • whenever the digit following the last significant figure is a 30.24 becomes 30.2
0, 1 , 2, 3, or 4

• if the last significant figure is an even number and the next digit 32.25 becomes 32.2
is a 5, with no other nonzero digits 32.65000 becomes 32.6

round up • whenever the digit following the last significant figure is a 22.49 becomes 22.5
6, 7, 8, or 9

• if the digit following the last significant figure is a 5 followed by a 54.7511 becomes 54.8
nonzero digit

• if the last significant figure is an odd number and the next digit is 54.75 becomes 54.8
a 5, with no other nonzero digits 79.3500 becomes 79.4

Section Review

1. Which SI units would you use for the following measurements?

a. the length of a swimming pool

b. the mass of the water in the pool

c. the time it takes a swimmer to swim a lap

2. Express the following measurements as indicated.

a. 6.20 mg in kilograms

b. 3 × 10−9 s in milliseconds

c. 88.0 km in meters

3. The following students measure the density of a piece of lead three times.

The density of lead is actually 11.34 g/cm3. Considering all of the results,

which person’s results were accurate? Which were precise? Were any both

accurate and precise?

a. Rachel: 11.32 g/cm3, 11.35 g/cm3, 11.33 g/cm3

b. Daniel: 11.43 g/cm3, 11.44 g/cm3, 11.42 g/cm3

c. Leah: 11.55 g/cm3, 11.34 g/cm3, 11.04 g/cm3

4. Perform these calculations, following the rules for significant figures.

a. 26 × 0.02584 = ?

b. 15.3 ÷ 1.1 = ?

c. 782.45 − 3.5328 = ?

d. 63.258 + 734.2 = ?
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MATHEMATICS AND PHYSICS

Just as physicists create simplified models to better understand the real world,

they use the tools of mathematics to analyze and summarize their observa-

tions. Then they can use the mathematical relationships among physical

quantities to help predict what will happen in new situations.

Tables, graphs, and equations can make data easier to understand

There are many ways to organize data. Consider the experiment shown in 

Figure 1-12, which tests Galileo’s hypothesis by dropping a table-tennis ball

and a golf ball in a vacuum and measuring how far each ball falls during a cer-

tain time interval. The results are recorded as a set of numbers corresponding to

the times of the fall and the distance each ball falls. A convenient way to analyze

the data is to form a table like Table 1-7. A clear trend can be seen in the data.

The more time that passes after each ball is dropped, the farther the ball falls.

1-3
The language of physics

1-3 SECTION OBJECTIVES

• Interpret data in tables and
graphs, and recognize
equations that summarize
data.

• Distinguish between
conventions for abbreviating
units and quantities.

• Use dimensional analysis to
check the validity of
expressions.

• Perform order-of-magnitude
calculations.

Table 1-7 Data from dropped-ball experiment

Time (s) Distance golf Distance table-
ball falls (cm) tennis ball falls (cm)

0.067 2.20 2.20

0. 133 8.67 8.67

0.200 19.60 19.59

0.267 34.93 34.92

0.333 54.34 54.33

0.400 78.40 78.39

A better method for analyzing the data is to construct a graph of the dis-

tance the balls fall in each time interval, as shown in Figure 1-13 on the next

page. Using the graph, you can reconstruct the table by noting the values

along the distance and time axes for each of the points shown.

In addition, because the graph shows an obvious pattern, we can draw a

smooth curve through the data points to make estimations for times when we

have no data, such as 0.225 s. The shape of the graph also provides informa-

tion about the relationship between time and distance.

Figure 1-12
This experiment tests Galileo’s
hypothesis by having two balls 
with different masses dropped
simultaneously.
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We can also use the following equation to describe the relationship

between the variables in the experiment:

(change in position in meters) = 4.9 × (time of fall in seconds)2

This equation allows you to reproduce the graph and make predictions about

the change in position for any arbitrary time during the fall.

Physics equations indicate relationships 

While mathematicians use equations to describe relationships between vari-

ables, physicists use the tools of mathematics to describe measured or pre-

dicted relationships between physical quantities in a situation. For example,

one or more variables may affect the outcome of an experiment. In the case of

a prediction, the physical equation is a compact statement based on a model

of the situation. It shows how two or more variables are thought to be related.

Many of the most important equations in physics do not contain numbers.

Instead, they represent a simple description of the relationship between phys-

ical quantities.

To make expressions as simple as possible, physicists often use letters to

describe specific quantities in an equation. For example, the letter v is used to

denote speed. Sometimes, Greek letters are used to describe mathematical oper-

ations. For example, the Greek letter ∆ (delta) is often used to mean “difference

or change in,” and the Greek letter Σ (sigma) is used to mean “sum” or “total.”

With these conventions, the word equation above can be written as follows:

∆y = 4.9(∆t)2

The abbreviation ∆y indicates the change in a ball’s position from its starting

point, and ∆t indicates the time elapsed.

As you saw in Section 1-2, the units in which these quantities are measured

are also often abbreviated with symbols consisting of a letter or two. Most

physics books provide some clues to help you keep track of which letters refer to

quantities and variables and which letters are used to indicate units. Typically,

0.100 0.4000.200 0.5000.300

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00

D
is

ta
nc

e 
(c

m
)

Time (s)

Graph of experimental data

Figure 1-13
The graph of these data provides a
convenient way to summarize the
data and indicate the relationship
between the time an object has been
falling and the distance it has fallen.

TOPIC: Graphing
GO TO: www.scilinks.org
sciLINKS CODE: HF2013
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variables and other specific quantities are abbreviated with letters that are bold-
faced or italicized. Units are abbreviated with regular letters (sometimes called

roman letters). Some examples of variable symbols and the abbreviations for

the units that measure them are shown in Table 1-8.
As you continue to study physics, carefully note the introduction of new

variable quantities, and recognize which units go with them. The tables pro-

vided in Appendix A can help you keep track of these abbreviations.

EVALUATING PHYSICS EXPRESSIONS

Like most models physicists build to describe the world around them, physics

equations are valid only if they can be used to make predictions about situa-

tions. Although an experiment is the best way to test the validity of a physics

expression, several techniques can be used to evaluate whether expressions are

likely to be valid.

Dimensional analysis can weed out invalid equations

Suppose a car, such as the one in Figure 1-14, is moving at a speed of 88 km/h

and you want to know how long it will take it to travel 725 km. How can you

decide a good way to solve the problem?

You can use a powerful procedure called dimensional analysis.

Dimensional analysis makes use of the fact that dimensions can be

treated as algebraic quantities. For example, quantities can be added or

subtracted only if they have the same dimensions, and the two sides of

any given equation must have the same dimensions.

Let us apply this technique to the problem of the car moving at 

a speed of 88 km/h. This measurement is given in dimensions of

length over time. The total distance traveled has the dimension of

length. Multiplying these numbers together gives the dimensions in-

dicated below. Clearly, the result of this calculation does not have 

the dimensions of time, which is what you are trying to calculate.

That is,


le

ti

n

m

gt

e

h
 × length = 

le

t

n

im

gt

e

h2

 or 
8

1

8

.0

km

h
 × 725 km = 

6.4 ×
1

1

.0

04

h

km2



The differences between quantities
denoted with boldfaced symbols
and those denoted with italicized
symbols will be further described in
Chapter 3.

CONCEPT PREVIEW

Table 1-8 Abbreviations for variables and units

Quantity Symbol Units Unit abbreviations

change in position ∆x, ∆y meters m

time interval ∆t seconds s

mass m kilograms kg

Figure 1-14
Dimensional analysis can be a useful
check for many types of problems,
including those involving the length
of time it would take for this car to
travel 725 km if it moves with a
speed of 88 km/h.
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The physicist Enrico Fermi made
the first nuclear reactor at the Uni-
versity of Chicago in 1942. Fermi
was also well known for his ability
to make quick order-of-magnitude
calculations, such as estimating the
number of piano tuners in New
York City.

To calculate an answer that will have the dimension of time, you should

take the distance and divide it by the speed of the car, as follows:

length ÷ 
le

ti

n

m

gt

e

h
 = 

leng

le

th

ng

×
th

time
 = time 

725 k

8

m

8 k

×
m

1.0 h
 = 8.2 h

In a very simple example like this one, you might be able to solve the prob-

lem without dimensional analysis. But in more-complicated situations, dimen-

sional analysis is a wise first step that can often save you a great deal of time.

Order-of-magnitude estimations check answers

Because the scope of physics is so wide and the numbers may be astronomi-

cally large or subatomically small, it is often useful to estimate an answer to a

problem before trying to solve the problem exactly. This kind of estimate is

called an order-of-magnitude calculation, which means determining the power

of 10 that is closest to the actual numerical value of the quantity. Once you

have done this, you will be in a position to judge whether the answer you get

from a more exacting procedure is correct.

For example, consider the car trip described in the discussion of dimension-

al analysis. We must divide the distance by the speed to find the time. The dis-

tance, 725 km, is closer to 103 km (or 1000 km) than to 102 km (or 100 km), so

we use 103 km. The speed, 88 km/h, is about 102 km/h (or 100 km/h).


1

1

0

0
2

3

k

k

m

m

/h
 = 10 h

This estimate indicates that the answer should be closer to 10 than to 1 or

to 100 (or 102). If you perform the calculation, you will find that the correct

answer is 8.2 h, which certainly fits this range.

Order-of-magnitude estimates can also be used to estimate numbers in sit-

uations in which little information is given. For example, how could you esti-

mate how many gallons of gasoline are used annually by all of the cars in the

United States?

First, consider that the United States has about 250 million people. Assum-

ing that each family of about five people has a car, an estimate of the number

of cars in the country is 50 million.

Next, decide the order of magnitude of the average distance each car travels

every year. Some cars travel as few as 1000 mi per year, while others travel

more than 100 000 mi per year. The appropriate order of magnitude to

include in the estimate is 10 000 mi, or 104 mi, per year.

If we assume that cars average 20 mi for every gallon of gas, each car needs

about 500 gal per year.

�10
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��210g
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al

i
� = 500 gal/year for each car

TOPIC: Orders of magnitude
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NSTA



You have seen the signs before. “Billions of Ham-
burgers Sold.” “Over a Million Satisfied Customers.”
These are pretty large numbers. Who counted all of
those burgers and customers? Can these claims be
trusted?

For most large numbers, such as the number of stars
in the universe, the exact quantity is not known.
Nobody really needs the exact number of burgers,
customers, or stars, so no one is paid to make an
exact count. Typically, these numbers are estimates
from other data, such as the amount of raw materi-
als consumed, the sales income of a company, or the
number of stars in a very small patch of sky.

To see how this works, consider M&M’s™ choco-
late candies. How many of these candies have been
eaten over all of time? According to the head office
of Mars, Inc., the manufacturer of M&M’s candies,
“well over 100 million candies a day have been con-
sumed” for the last 10 years. To keep up with this
rate of consumption, 10 years (3650 days) would
require the production of the following number of
candies:


108 c

d

a

a

n

y

dies
 × (3.6 × 103 days) = 3.6 × 101 1 candies

M&M’s candies have been produced in large quanti-
ties since 1942. Assuming that the average produc-
tion rate for each decade is at least half the amount
for the last 10 years, we can say that more than 
1 .3 × 101 2, or 1 trillion, M&M’s candies have been
eaten over time.

But if no one is counting, can you be sure these
claims are reasonable? You can test the validity of
these claims by making an order-of-magnitude esti-

mate of what this would mean for a single person
and deciding whether it seems reasonable.

Is it reasonable to assume that over 100 million
M&M’s candies are eaten every day? First consider
how many people are likely to be consuming these
candies. The population of the United States is
about 250 million people. Not all people in the Unit-
ed States eat M&M’s candies, but these candies are
also sold in many other countries, so a number like
200 million potential consumers seems about right.

Next, examine these numbers on a per-person (or
per capita) basis by dividing the number eaten per
day by the number of people who do the eating.


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/d
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a

le

y
 = 0.5 candies per day per person

Is it likely that 200 million people would carefully cut
their M&M’s candies in half? No, this number is an
average over the period of one day. Instead of consid-
ering the average per day, it may be more appropriate
to consider a longer period of time, like a month.Cer-
tainly it is possible to imagine a typical consumer eat-
ing 15 candies during a month. This would mean that
the average consumer would consume a regular-sized
packet every three months or so.

Thus, the claim that 100 million M&M’s candies are
eaten daily seems reasonable based on the esti-
mates. Breaking large numbers like this down in
terms of per capita consumption can help identify
whether they are reasonable.

A Billion Burgers, a Trillion M&M’s?
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Section Review

1. Which of the following graphs best matches the data shown below?

Volume of air (m3) Mass of air (kg)

0.50 0.644
1.50 1.936
2.25 2.899
4.00 5.159
5.50 7.096

2. Which of the following equations best matches the data from item 1?

a. (mass)2 = 1.29 (volume) b. (mass)(volume) = 1.29

c. mass = 1.29 (volume) d. mass = 1.29 (volume)2

3. Indicate which of the following physics symbols denote units and which

denote variables or quantities.

a. C b. c c. C d. t e. T f. T

4. Determine the units of the quantity described by the following combina-

tions of units:

a. kg (m/s) (1/s) b. (kg/s) (m/s2)

c. (kg/s) (m/s)2 d. (kg/s) (m/s)

5. Which of the following is the best order of magnitude estimate in meters

of the height of a mountain?

a. 1 m b. 10 m c. 100 m d. 1000 m

Figure 1-15
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Multiplying this by the estimate of the total number of cars in the United

States gives an annual consumption of more than 2 × 1010 gallons.

(5 × 107 cars)�51

00

ca

g

r

al
� = 2.5 × 1010 gal

This corresponds to a yearly consumer expenditure of more than $20 bil-

lion! Even so, this estimate may be low because we haven’t accounted for com-

mercial consumption and two-car families.
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KEY IDEAS

Section 1-1 What is physics?
• Physics is the study of the physical world, from motion and energy to light

and electricity.

• Physics uses the scientific method to discover general laws that can be used

to make predictions about a variety of situations.

• A common technique in physics for analyzing a complex situation is to

disregard irrelevant factors and create a model that describes the essence

of a system or situation.

Section 1-2 Measurements in experiments
• Physics measurements are typically made and expressed in SI, a system

that uses a set of base units and prefixes to describe measurements of

physical quantities.

• Accuracy describes how close a measurement is to reality. Precision results

from the limitations of the measuring device used.

• Significant figures are used to indicate which digits in a measurement are

actual measurements and which are estimates.

• Significant-figure rules provide a means to ensure that calculations do not

report results that are more precise than the data used to make them.

Section 1-3 The language of physics
• Physicists make their work easier by summarizing data in tables and

graphs and by abbreviating quantities in equations.

• Dimensional analysis can help identify whether a physics expression is a

valid one.

• Order-of-magnitude calculations provide a quick way to evaluate the

appropriateness of an answer.

CHAPTER 1
Summary

KEY TERMS

accuracy (p. 15)

controlled experiment (p. 9)

model (p. 6)

precision (p. 15)

significant figures (p. 16)

system (p. 7)

Variable symbols

Quantities Units

∆x, ∆y change in position m meters

∆t time interval s seconds

m mass kg kilograms

Copyright © by Holt, Rinehart and Winston. All rights reserved.



27The Science of Physics

THE SCIENCE OF PHYSICS

Review questions

1. Refer to Table 1-1 on page 5 to identify at least two
areas of physics involved in the following:

a. building a louder stereo system in your car
b. bungee jumping
c. judging how hot a stove burner is by looking

at it
d. cooling off on a hot day by diving into a

swimming pool

2. Which of the following scenarios fit the approach of
the scientific method?

a. An auto mechanic listens to how a car runs
and comes up with an idea of what might be
wrong. The mechanic tests the idea by adjust-
ing the idle speed. Then the mechanic decides
his idea was wrong based on this evidence.
Finally, the mechanic decides the only other
problem could be the fuel pump, and he con-
sults with the shop’s other mechanics about
his conclusion.

b. Because of a difference of opinions about
where to take the class trip, the class president
holds an election. The majority of the stu-
dents decide to go to the amusement park
instead of to the shore.

c. Your school’s basketball team has advanced to
the regional playoffs. A friend from another
school says their team will win because their
players want to win more than your school’s
team does.

d. A water fountain does not squirt high enough.
The handle on the fountain seems loose, so you
try to push the handle in as you turn it. When
you do this, the water squirts high enough that
you can get a drink. You make sure to tell all
your friends how you did it.

3. You have decided to select a new car by using the
scientific method. How might you proceed?

4. Consider the phrase, “The quick brown fox jumped
over the lazy dog.” Which details of this situation
would a physicist who is modeling the path of a fox
ignore?

SI UNITS

Review questions

5. List an appropriate SI base unit (with a prefix as
needed) for measuring the following:

a. the time it takes to play a CD in your stereo
b. the mass of a sports car
c. the length of a soccer field
d. the diameter of a large pizza
e. the mass of a single slice of pepperoni
f. a semester at your school
g. the distance from your home to your school
h. your mass
i. the length of your physics lab room
j. your height

6. If you square the speed expressed in meters per sec-
ond, in what units will the answer be expressed?

7. If you divide a force measured in newtons (1 new-
ton = 1 kg•m/s2) by a speed expressed in meters per
second, in what units will the answer be expressed?

Conceptual questions

8. The height of a horse is sometimes given in units of
“hands.” Why was this a poor standard of length
before it was redefined to refer to exactly 4 in.?

9. Explain the advantages in having the meter officially
defined in terms of the distance light travels in a
given time rather than as the length of a specific
metal bar.

10. Einstein’s famous equation indicates that E = mc2,
where c is the speed of light and m is the object’s
mass. Given this, what is the SI unit for E?

CHAPTER 1
Review and Assess
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17. Figure 1-16 shows photographs of unit conversions
on the labels of some grocery-store items. Check the
accuracy of these conversions. Are the manufactur-
ers using significant figures correctly?

(a) (b) 

(c) (d) 

18. The value of the speed of light is now known to be
2.997 924 58 × 108 m/s. Express the speed of light in
the following ways:

a. with three significant figures
b. with five significant figures
c. with seven significant figures

19. How many significant figures are there in the fol-
lowing measurements?

a. 78.9 ± 0.2 m
b. 3.788 × 109 s
c. 2.46 × 106 kg
d. 0.0032 mm

20. Carry out the following arithmetic operations:

a. find the sum of the measurements 756 g,
37.2 g, 0.83 g, and 2.5 g

b. find the quotient of 3.2 m/3.563 s
c. find the product of 5.67 mm × p
d. find the difference of 27.54 s and 3.8 s

21. A fisherman catches two sturgeons. The smaller of
the two has a measured length of 93.46 cm (two
decimal places and four significant figures), and the
larger fish has a measured length of 135.3 cm (one
decimal place and four significant figures). What is
the total length of the two fish?

22. A farmer measures the distance around a rectangu-
lar field. The length of each long side of the rectan-
gle is found to be 38.44 m, and the length of each
short side is found to be 19.5 m. What is the total
distance around the field?

Figure 1-16

Practice problems

11. Express each of the following as indicated:

a. 2 dm expressed in millimeters
b. 2 h 10 min expressed in seconds
c. 16 g expressed in micrograms
d. 0.75 km expressed in centimeters
e. 0.675 mg expressed in grams
f. 462 mm expressed in centimeters
g. 35 km/h expressed in meters per second

(See Sample Problem 1A.)

12. Use the SI prefixes in Table 1-3 on page 12 to con-
vert these hypothetical units of measure into appro-
priate quantities:

a. 10 rations
b. 2000 mockingbirds
c. 10−6 phones
d. 10−9 goats
e. 1018 miners

(See Sample Problem 1A.)

13. Use the fact that the speed of light in a vacuum is
about 3.00 × 108 m/s to determine how many kilo-
meters a pulse from a laser beam travels in exactly 
one hour.
(See Sample Problem 1A.)

14. If a metric ton is 1.000 × 103 kg, how many 85 kg
people can safely occupy an elevator that can hold a
maximum mass of exactly 1 metric ton?
(See Sample Problem 1A.)

ACCURACY, PRECISION, AND
SIGNIFICANT FIGURES

Review questions

15. Can a set of measurements be precise but not accu-
rate? Explain.

16. How many significant figures are in the following
measurements?

a. 300 000 000 m/s
b. 25.030°C
c. 0.006 070°C
d. 1.004 J
e. 1.305 20 MHz

Copyright © by Holt, Rinehart and Winston. All rights reserved.



29The Science of Physics

DIMENSIONAL ANALYSIS AND
ORDER-OF-MAGNITUDE ESTIMATES

Review questions

Note: In developing answers to order-of-magnitude cal-
culations, you should state your important assump-
tions, including the numerical values assigned to
parameters used in the solution. Since only order-of-
magnitude results are expected, do not be surprised if
your results differ from those of other students.

23. Suppose that two quantities, A and B, have different
dimensions. Which of the following arithmetic oper-
ations could be physically meaningful?

a. A + B
b. A/B
c. A × B
d. A − B

24. Estimate the order of magnitude of the length in
meters of each of the following:

a. a ladybug
b. your leg
c. your school building
d. a giraffe
e. a city block

25. If an equation is dimensionally correct, does this
mean that the equation is true?

26. The radius of a circle inscribed in any triangle whose
sides are a, b, and c is given by the following equa-
tion, in which s is an abbreviation for (a + b + c) ÷ 2.
Check this formula for dimensional consistency.

r =�
(s� −� a�)(�s�−

s� b�)(�s�−� c�)
�

27. The period of a simple pendulum, defined as the
time necessary for one complete oscillation, is mea-
sured in time units and is given by the equation

T = 2p�
L

g
�

where L is the length of the pendulum and g is the
acceleration due to gravity, which has units of
length divided by time squared. Check this equation
for dimensional consistency.

Conceptual questions

28. In a desperate attempt to come up with an equation to
solve a problem during an examination, a student
tries the following: (velocity in m/s)2 = (acceleration
in m/s2) × (time in s). Use dimensional analysis to
determine whether this equation might be valid.

29. Estimate the number of breaths taken during 70
years, the average life span of a person.

30. Estimate the number of times your heart beats in an
average day.

31. Estimate the magnitude of your age, as measured in
units of seconds.

32. An automobile tire is rated to last for 50 000 mi.
Estimate the number of revolutions the tire will
make in its lifetime.

33. Imagine that you are the equipment manager of a
professional baseball team. One of your jobs is to
keep a supply of baseballs for games in your home
ballpark. Balls are sometimes lost when players hit
them into the stands as either home runs or foul
balls. Estimate how many baseballs you have to buy
per season in order to make up for such losses.
Assume your team plays an 81-game home schedule
in a season.

34. A chain of hamburger restaurants advertises that it
has sold more than 50 billion hamburgers over the
years. Estimate how many pounds of hamburger
meat must have been used by the restaurant chain
to make 50 billion hamburgers and how many head
of cattle were required to furnish the meat for these
hamburgers.

35. Estimate the number of piano tuners living in New
York City (The population of New York City is
approximately 8 million). This problem was first
proposed by the physicist Enrico Fermi, who was
well known for his ability to quickly make order-of-
magnitude calculations.

36. Estimate the number of table-tennis balls that
would fit (without being crushed) into a room that
is 4 m long, 4 m wide, and 3 m high. Assume that
the diameter of a ball is 3.8 cm.
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39. Exactly 1 quart of ice cream is to be made in the
form of a cube. What should be the length of one
side in meters for the container to have the ap-
propriate volume? (Use the following conversion:
4 qt = 3.786 × 10−3 m3)

40. You can obtain a rough estimate of the size of a mol-
ecule with the following simple experiment: Let a
droplet of oil spread out on a fairly large but smooth
water surface. The resulting “oil slick” that forms on
the surface of the water will be approximately one
molecule thick. Given an oil droplet with a mass 
of 9.00 × 10−7 kg and a density of 918 kg/m3 that
spreads out to form a circle with a radius of 41.8 cm
on the water surface, what is the approximate diam-
eter of an oil molecule?

MIXED REVIEW PROBLEMS

37. Calculate the circumference and area for the follow-
ing circles. (Use the following formulas: circumfer-
ence = 2pr and area = pr2.)

a. a circle of radius 3.5 cm
b. a circle of radius 4.65 cm

38. A billionaire offers to give you $5 billion if you will
count out the amount in $1 bills or a lump sum of
$5000. Which offer should you accept? Explain your
answer. (Assume that you can count at an average
rate of one bill per second, and be sure to allow for
the fact that you need about 10 hours a day for
sleeping and eating. Your answer does not need to
be limited to one significant figure.)

Press p, and scroll down to “Chap1” by press-

ing ∂. Press e to execute the program.

Press e twice to begin graphing. The calcula-

tor will display three lines. Each line represents one

type of wire. The mass of the wire in grams is plot-

ted on the y-axis, and the length of the wire in cen-

timeters is plotted on the x-axis.

The calculator is already in ◊ mode; a blink-

ing cursor should be visible on the central line. Press

¬ to move along this line. Press ® to move from

one line to another. The equation for the line being

traced appears in the top left corner of the screen.

The values corresponding to the placement of the

cursor appear at the bottom left corner. Use these

values to complete the following exercises.

Find the approximate masses of each kind of

wire at the following lengths:

b. 0.3 cm

c. 5.2 cm

d. 7.3 cm

e. Assuming equal size, does a larger or smaller

density correspond to a larger mass?

Press e and ı to end.

Graphing calculators
Refer to Appendix B for instructions on download-

ing programs for your calculator. The program

“Chap1” allows you to analyze the relationship

between the mass and length of three wires, each

made of a different substance.

All three wires have a diameter of 0.50 cm.

Because the wires have the same diameter, their

cross-sectional areas are the same. As for any circle,

this area is equal to pr2. Using this area, the wires

can be described by the following equations:

Y1 = 8.96X*p(0.25)2

Y2 = 2.70X*p(0.25)2

Y3 = 10.49X*p(0.25)2

In these equations, X represents the length of the

wire in centimeters. Note that X is multiplied by a dif-

ferent factor in each equation. This factor signifies the

mass per unit volume, or density, of the substance.

a. Assuming the density is in units of grams per

centimeter, use dimensional analysis to deter-

mine the units of Y.
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41. An ancient unit of length called the cubit was equal
to approximately 50 centimeters, which is, of
course, approximately .50 meters. It has been said
that Noah’s ark was 300 cubits long, 50 cubits wide,
and 30 cubits high. Estimate the volume of the ark
in cubic meters. Also estimate the volume of a typi-
cal home, and compare it with the ark’s volume.

42. If one micrometeorite (a sphere with a diameter of
1.0 × 10−6 m) struck each square meter of the moon
each second, it would take many years to cover the
moon with micrometeorites to a depth of 1.0 m.
Consider a cubic box, 1.0 m on a side, on the moon.
Find how long it would take to completely fill the
box with micrometeorites.

43. One cubic centimeter (1.0 cm3) of water has a mass
of 1.0 × 10−3 kg at 25°C. Determine the mass of
1.0 m3 of water at 25°C.

44. Assuming biological substances are 90 percent water
and the density of water is 1.0 × 103 kg/m3, estimate
the masses (density multiplied by volume) of the
following:

a. a spherical cell with a diameter of 1.0 mm
(volume = 4

3
 pr3)

b. a fly, which can be approximated by a cylinder
4.0 mm long and 2.0 mm in diameter 
(volume = lpr2)

45. The radius of the planet Saturn is 5.85 × 107 m, and
its mass is 5.68 × 1026 kg.

a. Find the density of Saturn (its mass divided by
its volume) in grams per cubic centimeter.
(The volume of a sphere is given by 4

3
pr3.)

b. Find the surface area of Saturn in square
meters. (The surface area of a sphere is given
by 4pr2.)

Performance assessment
1. Imagine that you are a member of your state’s high-

way board. In order to comply with a bill passed in

the state legislature, all of your state’s highway signs

must show distances in miles and kilometers. Two

plans are before you. One plan suggests adding met-

ric equivalents to all highway signs as follows: Dallas

300 mi (483 km). Proponents of the other plan say

that the first plan makes the metric system seem

more cumbersome, so they propose replacing the

old signs with new signs every 50 km as follows:

Dallas 300 km (186 mi). Participate in a class debate

about which plan should be followed.

2. Can you measure the mass of a five-cent coin with a

bathroom scale? Record the mass in grams dis-

played by your scales as you place coins on the

scales, one at a time. Then divide each measurement

by the number of coins to determine the approxi-

mate mass of a single five-cent coin, but remember

to follow the rules for significant figures in calcula-

tions. Which estimate do you think is the most

accurate? Which is the most precise?

Portfolio projects
3. Find out who were the Nobel laureates for physics

last year, and research their work. Alternatively,

explore the history of the Nobel Prizes. Who founded

the awards? Why? Who delivers the award? Where?

Document your sources and present your findings in

a brochure, poster, or presentation.

4. You have a clock with a second hand, a ruler marked

in millimeters, a graduated cylinder marked in milli-

liters, and scales sensitive to 1 mg. How would you

measure the mass of a drop of water? How would

you measure the period of a swing? How would you

measure the volume of a paper clip? How can you

improve the accuracy of your measurements? Write

the procedures clearly so that a partner can follow

them and obtain reasonable results.

5. Create a poster or other presentation depicting the

possible ranges of measurement for a dimension,

such as distance, time, temperature, speed, or mass.

Depict examples ranging from the very large to the

very small. Include several examples that are typical

of your own experiences.

Alternative Assessment
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PHYSICS AND MEASUREMENT
In this laboratory exercise, you will gain experience making measurements as

a physicist does. All measurements will be made using units to the precision

allowed by your instruments.

PREPARATION

1. Read the entire lab procedure, and plan the steps you will take.

2. Prepare a data table in your lab notebook with seven columns and five

rows, as shown below. In the first row, label the second through seventh

columns Trial 1, Trial 2, Trial 3, Trial 4, Trial 5, and Trial 6. In the first

column, label the second through fifth rows Length (cm), Width (cm),

Thickness (cm), and Mass (kg).

CHAPTER 1
Laboratory Exercise A

OBJECTIVES

•Use typical laboratory
equipment to make
accurate measurements.

•Measure length and
mass in SI units.

•Determine the appropri-
ate number of signifi-
cant figures for various
measurements and 
calculations.

•Examine the relation-
ships between mea-
sured physical
quantities using graphs
and data analysis.

MATERIALS LIST
✔ 2 rectangular wooden blocks
✔ 15 cm metric ruler
✔ balance
✔ meterstick

SAFETY

• Review lab safety guidelines. Always follow correct procedures in 
the lab.

Length (cm)

Width (cm)

Thickness
(cm)

Mass (kg)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

32
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PROCEDURE

Measuring length, width, thickness, and mass

3. Use a meterstick to measure the length of the wood block. Record all

measured digits plus one estimated digit.

4. Follow the same procedure to measure the width and thickness of the

block. Repeat all measurements two more times. Record your data.

5. Carefully adjust the balance to obtain an average zero reading when there

is no mass on it. Your teacher will show you how to adjust the balances in

your classroom to obtain an average zero reading. Use the balance to find

the mass of the block, as shown in Figure 1-17. Record the measurement

in your data table.

6. Repeat the mass measurement three more times, and record the values in

your data table. Each time, place the block on a different side.

7. For trials 4–6, repeat steps 3 through 6 with the second wood block.

ANALYSIS AND INTERPRETATION

Calculations and data analysis

1. Organizing data Using your data, calculate the volume of the wood

block for each trial. The equation for the volume of a rectangular block is

volume = length × width × thickness.

2. Analyzing data Use your measurements from different trials to answer

the following questions.

a. For each block, what is the difference between the smallest length

measurement and the largest length measurement?

b. For each block, what is the difference between the smallest calculated

volume and the largest calculated volume?

c. Based on your answers to (a) and (b), how does multiplying several

length measurements together to find the volume affect the precision

of the result?

Conclusions

3. Interpreting results For each trial, find the ratio between the mass

and the volume. Based on your data, what is the relationship between the

mass and volume?

4. Evaluating methods For each type of measurement you made, explain

how error could have affected your results. Consider method error and

instrument error. How could you find out whether error had a significant

effect on your results for each part of the lab?

Figure 1-17
Step 3: Always record measure-
ments to the precision allowed by
your instruments.
Step 5: Make sure you know how
to use the balances in your class-
room. The balance should read zero
when there is no mass on it. The
number of significant figures in your
measurement will be determined by
your instrument, the object being
measured, and the purpose of your
measurement.
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CHAPTER 1
Laboratory Exercise

Chapter 134

TIME AND MEASUREMENT
Many fields of physics require experimenters to study events that take place over

time. In this laboratory exercise, you will become familiar with the kinds of

equipment used to make these measurements, such as metersticks and stop-

watches; or motion detectors, CBL, and graphing calculators. All measurements

will be made using SI units to the precision allowed by your instruments.

PREPARATION

1. Determine whether you will be using the CBL and sensors or the stop-

watch. Read the entire lab for the appropriate procedure, and plan the

steps you will take.

2. Prepare a data table in your lab notebook with three columns and seven

rows. In the first row, label the columns Trial, Distance (m), and Time (s).

Label the second through seventh rows 1, 2, 3, 4, 5, and 6.

Stopwatch procedure begins on page 36.

CHAPTER 1
Laboratory Exercise B

OBJECTIVES

•Use typical laboratory
equipment to measure
the distance and time of
an observed motion.

•Measure distance and
time in SI units.

•Determine the appropri-
ate number of signifi-
cant figures for various
measurements.

•Use graphs and data
analysis to examine the
relationships between
measured physical
quantities.

MATERIALS LIST
✔ meterstick
✔ rectangular wooden block

PROCEDURE

CBL AND SENSORS

✔ C-clamp
✔ CBL
✔ CBL motion detector
✔ graphing calculator with link

cable
✔ support stand and clamp
✔ thin foam pad

STOPWATCH

✔ stopwatch

SAFETY

• Perform this lab in a clear area. Falling or dropped masses can cause
serious injury.

Trial Distance (m) Time (s)

1

2

3

4

5

6
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Measuring distance and time

3. This exercise should be performed with a partner.

Perform this in a clear area away from other groups.

Connect the CBL to the calculator with the unit-to-

unit link cable using the ports located on each unit.

Connect the motion detector to the SONIC port.

4. Set up the apparatus as shown in Figure 1-18.
Securely clamp the motion detector to the support

stand so that it faces downward, over the edge of

the table. Make sure the motion detector is far

enough away from the edge of the table that the sig-

nal will not hit the tabletop, clamp, or table leg.

5. Use a meterstick to measure a distance 0.5 m below

the motion detector, and mark the point with tape

on the table or stand. This is the starting position

from which the blocks will be dropped from rest.

Measure the height of the tape mark above the

floor. Record this distance in your data table.

6. Start the program PHYSICS on your graphing cal-

culator. Select option SET UP PROBES from the

MAIN MENU. Enter 1 for the number of probes.

Select MOTION DETECTOR from the list.

7. Select the MONITOR INPUT option from the

DATA COLLECTION menu. Test to be sure the

motion detector is positioned properly.

a. Read the CBL measurement for the distance

between the motion detector and the floor.

Measure the distance with a meterstick to con-

firm the CBL value. If the CBL reading is too low,

adjust the motion detector to make sure the sig-

nal is not hitting the table instead of the floor.

b. Cover the floor under the motion detector

with a foam pad to reduce feedback.

c. Hold the wooden block directly beneath the

motion detector, move the block up and down,

and read the CBL measurements. Make sure

the motion detector is not detecting other

objects, such as the stand base, the tabletop, or

the table leg. When the probe is functioning

correctly, press + on the calculator to return to

the MAIN MENU.

8. Select the COLLECT DATA option. Enter 0.02 for

the time between samples. Enter 99 for the number

of samples.

a. Check the values you entered, and press

ENTER. If the values are correct, select USE

TIME SETUP to continue. If you made a mis-

take entering the time values, select MODIFY

SETUP, reenter the values, and continue.

PROCEDURE

CBL AND SENSORS

Figure 1-18
Step 4: The motion detector should be clamped securely to
the stand, and the base of the stand should be clamped to the
table if possible.Tape the cord to the stand to keep it out of 
the way.
Step 7: With the CBL in MONITOR INPUT mode, move the
wooden block up and down below the motion detector to
check the readings.
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b. If you are given a choice on the TIME GRAPH

menu, select NON-LIVE DISPLAY. Otherwise,

continue to the next step.

9. One student should hold the block horizontally

between flat hands, as shown in Figure 1-19 on the

next page. Position the block directly below the

motion detector and level with the 0.5 m mark.

10. Turn on the CBL and the graphing calculator.

When the area is clear of people and objects, one

student should press ENTER on the graphing cal-

culator. As soon as the motion detector begins to

click, the student holding the block should release

the block by pulling both hands out to the side.

Releasing the block this way will prevent the block

from twisting as it falls, which could affect the

results of this experiment.

11. When the motion detector has stopped clicking

and the CBL displays DONE, press ENTER on the

graphing calculator to get to the SELECT CHAN-

NELS menu. Select the SONIC option, and then

select DISTANCE to plot a graph of distance in

meters against time in seconds. The graph should

have a smooth shape. If it has spikes or black lines,

repeat the trial to obtain a smooth graph, and con-

tinue on to the next step.

12. Examine the graph to find the section of the curve

that represents the block’s motion. On the far left and

far right, the curve represents the position of the

block before and after its motion. The middle section

of the curve represents the motion of the falling

block. Sketch the graph in your lab notebook.

13. Use the arrow keys to trace the graph. The x- and

y-coordinates will be displayed as the cursor moves

along the graph. Select a point from the beginning of

the block’s motion and another point from the end.

Find the time interval between the two points by

finding the difference between their x-values. Record

this in your data table as the time in seconds. Find the

distance moved by the block during that time by find-

ing the difference between the y-values of the two

points. Record this in your data table as the distance.

Press ENTER on the graphing calculator.

14. Repeat for two more trials, recording all data in

your data table. Try to drop the block from exactly

the same height each time.

15. Switch roles so that the student who dropped the

block is now operating the CBL, and repeat the

experiment. Perform three trials. Record all data in

your data table.

Analysis and Interpretation begins on page 37.

Measuring distance and time

3. Perform this exercise with a partner. One partner

will drop the wooden block from a measured

height, and the other partner will measure the time

it takes the block to fall to the floor. Perform this in

a clear area away from other groups.

4. One student should hold the wooden block held

straight out in front of him or her at shoulder

height. Hold the block between your hands, as

shown in Figure 1-19 on the next page. Use the

meterstick to measure the height of the wood

block. Record this distance in your data table.

5. Use the stopwatch to time the fall of the block.

Make sure the area is clear, and inform nearby

groups that you are about to begin. The student

holding the block should release it by pulling both

hands straight out to the sides. The student with

the stopwatch should begin timing the instant the

block is released and stop timing as soon as the

block hits the floor. In your data table, record the

time required for the block to fall.

PROCEDURE

STOPWATCH

Chapter 1
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Figure 1-19
Step 4: Hold the block between your hands.
Step 5: Release the block by pulling both hands straight out to
the sides. It may take some practice to release the block so that
it falls straight down without turning.

ANALYSIS AND INTERPRETATION

Calculations and data analysis

1. Organizing data Did the block always fall from the same height in the

same amount of time? Explain how you found the answer to this question.

2. Graphing data Using the data from all trials, make a scatter plot of the

distance versus the time of the block’s fall. Use a graphing calculator,

computer, or graph paper.

Conclusions

3. Evaluating methods For each type of measurement you made, explain

how error could have affected your results. Consider method error and

instrument error. How could you find out whether error had a significant

effect on your results for each part of the lab?

Extensions

4. Evaluating data If there is time and your teacher approves, conduct

the following experiment. Have one student drop the wooden block from

shoulder height while all other class members time the fall. Perform three

trials. Compare results each time. What does this exercise suggest about

accuracy and precision in the laboratory?

6. Repeat for two more trials, recording all data in

your data table. Try to drop the block from exactly

the same height each time.

7. Switch roles, and repeat steps 4 through 6. Perform

three trials. Record all data in your data table.
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